Moorlands Junior School

This calculation policy sets out the expectations for the mastery of addition, subtraction, multiplication and division as stipulated in the 2013
National Curriculum - https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file/335158/PRIMARY national curriculum -
Mathematics 220714.pdf
It also aims to show the progression of written methods taught and used at Moorlands Primary School.
Pupils are taught at according to the stage at which they are currently learning, with challenging mastery work being set to extend learning.
Children should not be discouraged from using previously taught methods in which they are secure while new concepts are being embedded.

Although this policy focuses largely on written calculation methods, it is important to recognise that the ability to calculate mentally lies at the heart of numeracy; in every written method there is an element of mental processing and children need to develop these mental skills and methods to allow them to do this efficiently. However, written recording can help children to clarify their thinking and supports and extends the development of more fluent and sophisticated strategies.

The long-term aim is for children to be able to select an efficient method that is appropriate for the given task. It is important that calculations are given a real life context or problem solving approach where possible to build children's understanding of the purpose of calculations and to help them recognise when to use certain operations and methods when faced with problems.

Methods we use at Moorlands

At Moorlands Junior School we use the White Rose scheme as the foundation of learning in conjunction with guidance from the NCETM.
We are using the White Rose philosophy of:

- fluency
- reasoning
- problem-solving

In our maths work, we primarily use a CPA approach (CPA - Concrete/ Pictorial/ Abstract). Concrete methods are used to help embed new concepts before moving on to pictorial and abstract work. By year 6, pictorial and abstract work should be the main focus.

At Moorlands we predominantly use White Rose as our main resource. However, we can also use other resources such as - Target Maths, Twinkle, nrich problems, Focus Education and other online resources.

The aim is that when children leave Moorlands they:

- Have a secure knowledge of number facts and a good understanding of the four calculation operations (addition, subtraction, multiplication and division)
- Make use of jottings, diagrams and informal notes to help record steps and part answers when using mental methods that generate more information
than can be kept in their heads
- Have an efficient, reliable, written method of calculation for each operation that they are able to apply with confidence when they are unable to perform a calculation mentally

We use the fluent 5 as an extra tool when teaching the four operations. This consists of 5 calculations which involve addition, subtraction, multiplication and division. We use this twice a week in order to improve the fluency and understanding of mental calculations.

Progression in Calculations

Addition

Skill: Add with up to 3 decimal places

Year: $5 / 6$

Place value counters
and plain counters on
a place value grid are
the most effective
manipulatives when
adding decimals with
1,2 and then 3

decimal places.
Ensure children have
experience of adding
decimals with a
variety of decimal
places. This includes
putting this into
context when adding
money and other
measures.

Subtraction

Multiplication

Skill: Multiply 4-digit numbers by 1 -digit numbers

$1,826 \times 3=5,478$

	Th	H	T	O
	1	8	2	6
\times				3
	5	4	7	8
2	1			
1				

Year: 5

When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method.
If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

Skill: Multiply 3-digit numbers by 2-digit numbers									Year: 5	
					Th	H	T	0	Children can continue to use the area model when multiplying 3digits by 2-digits. Place value counters become more efficient to use but Base 10 can be used to highlight the size of numbers. Children should now move towards the formal written method, seeing the links with the grid method.	
10 10 1 1 1 1 1		100 100 100 100 100 100 100	$\begin{array}{\|llll} 10 & 10 & 10 & 10 \\ 10 & 10 & 10 & 10 \\ 10 & 10 & 10 & 10 \end{array}$		\times	2	3	4		
						3	2			
						4	6	8		
		(10)				1^{7}	10	2		0
					7	4	8	8		
			\times	200		30		4		
			30	6,000		00		20		
	\times	7488	2	400		0		8		

Skill: Multiply 4-digit numbers by 2-digit numbers
Year: 5/6
When multiplying 4-

TTh	Th	H	T	O
	2	7	3	9
\times			2	8
2	1	9	1	2
5	4	7	8	0
7	6	6	9	2
7				

1
digits by 2-digits, children should be confident in using the formal written method.

If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method.

Consider where exchanged digits are placed and make sure this is consistent.

Division

Skill: Divide 2-digits by 1-digit (sharing with no exchange) | Year: 3 |
| :--- |

Skill: Divide 2-digits by 1-digit (grouping) | Year: 5 |
| :--- |

Skill: Divide 4-digits by 1-digit (grouping)						Year: 5
$8,532 \div 2=4,266$	2	4	2	6	$\frac{6}{12}$	Place value counters or plain counters can be used on a place value grid to support children to divide 4digits by 1-digit. Children can also draw their own counters and group them through a more pictorial method. Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges.

Times Tables

- We use Times Table Rock Stars (TTRS) in conjunction with the methods highlighted in the White Rose scheme of learning.

Skill: 8 times table															Year: 3
0090000000000000					1	2	3	4	5	6	7	(3)	9	10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the eight times table, using manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
					11	12	13	14	15	(16)	17	18	19	20	
					21	22	23	(24)	25	26	27	28	29	30	
					31	(2)	33	34	35	36	37	38	39	(4)	
					41	42	43	44	45	46	47	(48)	49	50	
					51	52	53	54	55	(5)	57	58	59	60	
					61	62	63	(6)	65	66	67	68	69	70	
					71	(2)	73	74	75	76	77	78	79	(8)	
					81	82	83	84	85	86	87	88	89	90	
8	16	24	32	40	91	92	93	94	95	96	97	98	99	100	
48	56	64	72	80											
-00000000-00000000-00000000-															

Skill: 6 times table															Year: 4
							3			(b)	7			10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
					11	(12)	13	14	15	16	17	18	19	20	
					21	22	23	(24)	25	26	27	28		(3)	
					31	32	33	34	35	(3)	37	38	39	40	
						(42)	43	44	45	46	47	(18)	49	50	
					51	52	53	(54)	55	56	57	58		(6)	
6	12	18	24	30	61	62	63	64	65	66	67	58	69	70	
36	42	48	54	60		72	73	74	75	76	77	78		80	
66	72	78	84	90			93	94		36	87	88			
$-000000-000000-00000-$															

Skill: 9 times table														Year: 4
00000000000000					1	2	3	4	5	6	78	8	10	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
					11	12	13	14	15	16		(18)	20	
					21	22	23	24	25	26	27	28	30	
					31	32	33	34	35	(3)	37	38	40	
					41	42	43	44	(45)	46	47	48	50	
9	18	27	36	45	51	52	53	(54)	55	56	57	58	60	
54	63	72	81	90	61	62	(3)	64	65	66	67	68	70	
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 -000000000-000000000-000000000														

Skill: 7 times table														Year: 4
0090900006					1	2	3	45	5		7	9	10	Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.
					11	12		(14)	15	16	1718	19	20	
					(2)	22	23	242	25	26	27 (28)	29	30	
					31	32	33	34 (3)	(3) 3	363	3738	39	40	
					41	(42)	43	44	454	464	4748	(4)	50	
7	14	21	28	35	51	52	53	545	55 (5)	5)	5758	59	60	
42	49	56	63	70	61	62	(6) 6	646	656	666	57	69	(2)	
1 12 15 74 5 16 18 79 80 81 82 83 84 85 86 87 88 89 9 92 93 94 95 96 97 98 99 -0000000-0000000-0000000-														

Skill: 11 times table														Year: 4
11	22	33	44	55	66		3	4		67	78			Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100
							1213	14	15	17	17			
77	88	99	110	121	132		(2) 23	24	25	262	2728		30	

Skill: 12 times table															Year: 4 Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the 12 times table, using manipulatives to support. Make links to the 6 times table, seeing how each multiple is double the sixes. Notice the pattern in the ones within each group of five multiples. The hundred square can support in highlighting this pattern.
									5					10	
12	24	36	48	60		(12)		14	15	16	17	18	19	20	
72	84	96	108	120	21	22	23	(24)	25	26	27	28	29	30	
						32	33	34	35	(3)	37	38	39	40	
2	144				41	42	43	44	45	46	47	(18)	49	50	
 the 12 times table, using manipulatives to support. Make links to the 6 times table, seeing how each multiple is double the sixes. Notice the pattern in the ones within each group of five multiples. The hundred square can support in highlighting this pattern.															

